On the Inconsistency of Classical Logic

Teodor J. Stepień, Łukasz T. Stepień

The Pedagogical University of Cracow, Kraków, ul. Podchorążych 2, 30-084, Poland, email: sfstepie@cyf-kr.edu.pl, lukasz.stepien@up.krakow.pl

Abstract: This is well-known fact that the classical propositional calculus (zero-order logic, classical propositional logic), is the most fundamental two-valued logical system. This is required for construction of the classical calculus of quantifiers (classical calculus of predicates, first-order logic), which is necessary to construct the classical functional calculus. This last one is needed to formalize the Arithmetic System. At the beginning, we introduce a notation and we repeat some well-known notions (among others, the notions of: operation of consequence, a system, consistency in the traditional sense, consistency in the absolute sense). Next, we present the theorem saying that classical propositional calculus is an inconsistent theory.

Key words: classical propositional calculus, consistency in the traditional sense, consistency in the absolute sense

1. Introduction

The symbols: →, ~, ∨, ∧, ≡ denote the connectives of implication, negation, disjunction, conjunction and equivalence, respectively. \(N = \{1, 2, \ldots\} \) denotes the set of all natural numbers.

Next, \(A_0 = \{p_0^1, p_0^2, \ldots, p_0^k, \ldots\} \) denotes the set of all propositional variables. The symbol \(S_0 \) denotes the set of all well-formed formulas, which are built in the usual manner from propositional variables by means of logical connectives. Next, \(P_0(\phi) \) denotes the set of all propositional variables occurring in \(\phi (\phi \in S_0) \).

\(R_{S_0} \) denotes the set of all rules over \(S_0 \). \(E(\mathcal{M}) \) is the set of all formulas valid in the matrix \(\mathcal{M} \). The symbol \(\mathcal{M}_2 \) denotes the classical two-valued matrix and \(Z_2 \) is the set of all formulas valid in the matrix \(\mathcal{M}_2 \) (see [10], cf. [1 - 7], [11 - 13]). The symbols \(\Rightarrow, \rightarrow, \forall, \exists \) are metalogical symbols.

Next, \(S_0^0 = \{\phi \in S_0 : \phi \notin Z_2 \ & \ & \& \phi \notin Z_2\} \).

Next, \(r_0 \) is the symbol of Modus Ponens in propositional calculus. Hence, \(R_0 = \{r_0\} \). The formula \(X \subseteq Y \) denotes that \(X \subseteq Y \) and \(X \neq Y \). For any \(X \subseteq S_0 \) and \(R \subseteq R_{S_0} \), \(Cn(R, X) \) is the smallest subset of \(S_0 \), containing \(X \), and closed under the rules belonging to \(R \), where \(R \subseteq R_{S_0} \).

The couple \((R, X) \) is called as a system, whenever \(R \subseteq R_{S_0} \), and \(X \subseteq S_0 \). Hence, \((R_0, Z_2) \) denotes the system of the classical propositional calculus.

Now we repeat some well-known definitions (see [10], cf. [5, 7 – 9, 11]). Let \(R \subseteq R_{S_0} \) and \(X \subseteq S_0 \). Then:

Definition 1.1. \((R, X) \in Cns^T \iff (\neg \exists \alpha \in S_0) [\alpha \in Cn(R, X) \ & \ & \& \neg \alpha \in Cn(R, X)] \).

Definition 1.2. \((R, X) \in Cns^A \iff Cn(R, X) \neq S_0 \).

\((R, X) \in Cns^T \) denotes that the system \((R, X) \) is consistent in the traditional sense. \((R, X) \in Cns^A \) denotes that the system \((R, X) \) is consistent in the absolute sense (see [10], cf. [11]).

2. The Main Result

Theorem. \((R_0, Z_2) \notin Cns^T \). (see [15], cf. [14]).

Proof. Elementary. □
References

